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EFFECT OF SURFACTANT ON BUBBLE MOTION
CLOSE TO A SOLID WALL

I. E. Shchekin UDC 541,183 :532.529.6

Numerical analysis is used to study the effect of surfactants on the parameters of gas-bubble
motion close to a solid wall under the influence of abrupt pressure change at infinity,

The study of gas-bubble motion close to a solid wall in liquids containing dissolved surfactant is ofgreat
interest for the design of chemical-engineering apparatus for a number of important liquid-extraction pro-
cesses and also in connection with the production technology for various solvents.

The present work gives the results of a numerical investigation of gas~bubble motion close to a solid
wall in an incompressible liquid containing surfactant, under the influence of an abrupt pressure change at
infinity.

Consider a bubble of radius R situated a distance x from the wall; the bubble pulsates and moves toward
the wall with velocity X. This bubble motion may be described by Lagrange equations [1]

4 o T g, 4 o7 9T _ g, 1)
dt  0Ox ox dt  OR OR
where T is the kinetic energy of the liquids, calculated from the potential and its derivatives at the boundary

surfaces by the formula

T=—-£§‘S‘cp—ald8.
2 on

The velocity-field potential ¢ satisfies the Laplace equation with the following boundary conditions

——ai =R —xcos®, -~ Yy

on =g on

=0 at thewall, (grad @), = 0. (2)

Using the method outlined in [2-4] to find the function ¢ satisfying the boundary conditions in Eq. (2), the liquid’
kinetic energy for the bubble close to the solid wall is given, retaining terms of order up to 83,_by the expression

T = 2mpR®[(1/3 — 1/8 &%) x% + (2 -|- &) R2 — 1/2¢2%R]. (3)

The system in Eq. (1) may be used in the case when the velocity field of the real liquid deviates slightly
from the corresponding velocity field of an ideal liquid. It was shown in [5] that this condition is satisfied for
a liquid with Re>1, Assume that the surfactant does not have a great effect on the hydrodynamies close to the
bubble surface; then, according to [6], the generalized force Fy is given by the expression

F, = 12ap Rx — 1.15AR*T,RT,. @

When the surfactant concentration is small and adsorption is far from saturation [7)

L (LRYY | 5
;\4 — —}é—c‘; \ D ) . ( )
Substituting Eq. (5) into Eq. (4) gives
. : 172
F, — 120pR% — LISR*T I3 C7" ( bR ) . (6)
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Fig. 1. Dependence of bubble displacement §=x/R, on
time 7= t/R) (Py/p)!/? for xo/Ry=3 (1, 2) and x,/R,=2
(1", 2'): 1, 1') in the absence of surfactant; b) with sur-
factant,
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Fig. 2 Fig. 3

Fig. 2. Dependence of velocity of bubble ,§= dx/dt) (o/ Po)i/ 2 on time
T= (t/Ro) (Po/p)i/2 for B, =x0/Ro =2: a) in the absence of surfactant;
b) with surfactant,

Po

Fig. 3. Time AT = (At/Ry)(Py/p)Y/?2 for the bubble to reach the solid
wall as a function of the initial distance from the wall 8;=x,/Ry: 1)
without surfactant; 2) with surfactant,

The generalized force Fg is given by the expression
20 R
FR-——'SﬂRz(Pr—‘PO— R ——-4}1——R .

The surface tension o is related to the adsorbed-material distribution I'; over the bubble surface by the Gibbs
equation [7]

0 =0, — R*T,T,.
Then
20, 2R*T, T, R
Fpr=8aR?|P.—P,— -0 L Lo . .
R ﬂR ( r 0 R i R 4”‘ R ) (7)
Substituting Egs. (3), (4), and (7) into Eq. (1) leads to a system of two differential equations describing the
radial and translational motion of the bubble close to a solid wall in the presence of surfactant:
q1 (1 4 &/2) - (3/2 + ) 12— 172620 B — 182 p— 1/4B2 - 1 —
—8/m* -+ Em—2R*T, Tgn ™ + 4Mm™ =0, ®)

(1 + 3/8e) M P + (3 + 9/4e%) n p — 97482 12 — 3487 —

: - RT, T,
— 9/16e*f2 — 9Mfn~* 4~ 0,8625 -——=L--2 =0,
T CoDl/z TI3/2
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In obtaining Eq. (8), it is assumed that the gas in the bubble is compressed adiabatically, v=4/8.,

Numerical solution of Eq. {8) was carried out on a computer by the Runge—~Kutta method, The initial
conditions used in solving Eq. (8) correspond to the assumptions that initially the bubble (radius R,=0.0001 m}
is at rest; that the difference between the pressure at infinity and that inside the bubble AP=P; — Pgy = 0,9
10° N/m?for t = 0, ng =1, B=By 1=0, & = 0; and that the bubble is moving in an aqueous solution of amyl alco-
hol at 18°C (diffusion coefficient D = 0.88+10° m%/sec; I'y/Cy = 3.55-107* [4]; Cy = 0.01 M).

As an example, Figs. 1 and 2 show results for the displacement (Fig. 1) and velocity (Fig. 2) of thebubble
as a function of time, with and without additions of surfactant, for various initial distances from the wall,

Analysis of the results shows that the bubble displacement and its velocity toward the wall are signifi-~
cantly different before and after the addition of surfactant, Thus, it is evident from the curves (for §;,=2) that
the addition of surfactant halves the maximum bubble velocity toward the wall.

In the present case, the bubble reaches the wall from any initial distance, although several compression
and expansion cycles may be required.

The existence of maxima and minima in the translational bubble velocity toward the wall (Fig. 2) may be
explained by means of the momentum~conservation law mk =const, where m is the associated mass of liquid,
equal to (2/3)7pR? for translational bubble motion.

Hence it is evident that, on compression to the minimum size, the translational bubble velocity increases
and reaches a maximum, while on expansion to the maximum size the bubble velocity decreases and reaches
a minimum. The increase in the maximum translational velocity cbserved with increase in time is explained
by a decrease in the bubble—wall distance and, hence, an increase in the attractive forces between the bubble
and the wall, Fluctuations in the translational bubble velocity lead to a certain nonmonotonic dependence 8(r)
(Fig. 1).

The time for the bubble surface to reach the solid wall is shown in Fig. 3 as a function of the initial dis~
tance, with (curve 2) and without (curve 1) addition of surfactant. T is evident from these curves that the
change in the time required for the bubble to reach the solid wall that results from the addition of surfactant
increases with increase in the initial distance from the wall.

Note that as is evident from Eq. (6), increase in parameters such as Ty and T, or decrease in C; is ac-
companied by an increase in the retarding forces due to the surfactant and hence to a decrease in the transla-
tional bubble velocity toward the solid wall,

These results indicate that surfactant has a significant effect on bubble motion toward a solid wall, even
at low surfactant concentrations.

NOTATION

Ry, R, bubble radius at initial and present times; x;, x, initial and present distance from bubble center
to wall; T, kinetic energy of liquid; u, dynamie viscosity of liquid; R*, universal gas constant; T, temperature;
Ty, equilibrium surface concentration of adsorbed material; A, parameter defined by Eq. (5); C,, concentration
of material dissolved in liquid; D, diffusion coefficient; 0y, surface tension in the absence of surfactant; o, sur-
face tension with surfactant present; Pg =Pg0(R0/R)37, gas pressure in bubble; Pgq, gas pressure in bubble
when R=Ry; Py, pressure in liquid; M, dimensionless viscosity; vy, adiabatic coefficient; t, time; 7, dimension-
less time; A7, time for bubble surface to reach solid wall; 6=Pg0/P0, relative gas content; N, number of moles
of material; r, 6, polar coordinates.
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HEAT TRANSFER INSIDE A ROTATING
RECTANGULAR CAVITY

V. K. Shchukin , , ' UDC 536.24

The qualitative liquid-flow pattern is considered for a rotating rectangular cavity in the case
of heat transfer in a direction parallel to the axis of rotation; calculational relations describ~
ing the heat transfer are obtained.

Caleculations of the temperature state of rotating machine parts require information on heat=transfer co-
efficients in channels and cavities. One type of rotating cavity is shown in Fig. 1: The cavity is in the form
of a rectangular closed parallelepiped, through which there is heat transfer in a direction parallel to the axis
of rotation. The liquid motion in such a eavity is determined by centrifugal and Coriolis forces,

The field due to the centrifugal mass forees is inhomogeneous, because of the change in the liquid density
in the thermal boundary layer near the heat-transfer surface and also as a result of the variation in the inertial
centrifugal acceleration over the radius of rotation.

The variation in liquid density in the direction normal to the heat-transfer surface gives rise to radial
displacement of the liquid and leads to the development of circulation in opposite directions in the two halves
of the cavity. The directions of the circulatory motion are indicated on the side surface of the cavity inFig. 1.

The liquid motion near the cooled wall occurs in a positive pressure gradient, while close to the heated
wall there is a negative pressure gradient.

The Coriolis acceleration vector lies in the cross-sectional plane, and varies in magnitude in accordance
with the velocity of radial displacement of the liquid. The distribution of the radial velocity and the direction
of the Coriolis force in the cross section are indicated on the front wall of the cavity in Fig. 1. This Coriolis~
force distribution may give rise to rotational motion of the liquid, leading to changes in the heat-transfer con-
ditions. The direction of motion is shown in Fig, 1.
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Fig. 1. Diagram of rotating cavity.
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